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Low-Energy States in Y 90 
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The low-energy levels of the odd-odd nucleus Y90 are calculated with finite-range central and tensor forces 
to first order by means of the j-j coupled odd-group model. The two-body matrix elements for the central 
and tensor forces are expressed in the j-j representation, from which a generalization to off-diagonal matrix 
elements is obtained in the limit of the zero range. A phenomenological Gaussian potential without a hard 
core, estimated from the free two-nucleon potentials of Jackson-Blatt and Brueckner-Gammel-Thaler, is 
used for the residual interaction. The effects of the tensor force are analyzed in detail as a function of the 
force range. The numerical results of the calculation are in reasonably good agreement with available 
experimental spectra. 

I. INTRODUCTION 

RECENTLY, an isomeric state in the odd-odd 
nucleus Y90 has been found.1 I t is interesting to 

see if this isomeric state can be explained in terms of 
the j-j coupling shell model. Furthermore, as several 
other low-energy states were reported previously,2 a 
theoretical calculation of these observed low-energy 
states is worthwhile, with the hope that it might 
provide useful information on the effective interaction 
between protons and neutrons in the nucleus. 

We shall adopt the odd-group model with j-j 
coupling in which the nuclear properties of the nucleus 
are assumed to be determined by the properties of the 
odd-group particles. In odd-odd nuclei, one assumes 
that the residual interaction between proton and 
neutron is sufficiently weak so that it can be considered 
as a perturbation on the central field of the ' 'nuclear 
core," and further that the wave function is a vector-
coupled product of the wave functions of two odd-group 
particles. 

To justify the theoretical basis of the well-known 
Nordheim's coupling rule,3 de-Shalit investigated the 
case of nuclei with one proton and neutron outside 
closed shells. He used the zero-range force between 
them, and obtained expressions for the diagonal matrix 
elements.4 Calculations for specific odd-odd nuclei have 
been made by several workers for the finite-range force 
in which central exchange forces are included.5'6 

We shall use the central and tensor parts of the 
nuclear force, neglecting the spin-orbit force entirely. 
This practice is probably reasonable, as it appears that 

* This work was done under the auspices of the U. S. Atomic 
Energy Commission. 

1 W. L. Alford, D. R. Kochler, and C. E. Mandeville, Phys. 
Rev. 123, 1365 (1961); L. Haskin and R. Vandenbosch, ibid. 123, 
184 (1961); R. L. Heath, J. E. Cline, C. W. Reich, E. C. Yates, 
and E. H. Turk, ibid. 123, 903 (1961); W. S. Lyon, J. S. Eldridge, 
and L. C. Bate, ibid. 123, 1747 (1961). 

2 G. A. Bartholomew, P. J. Campion, J. W. Knowles, and G. 
Manning, Nucl. Phys. 10, 590 (1959). 

3 L. W. Nordheim, Phys. Rev. 78, 294 (1950). 
4 A. de-Shalit, Phys. Rev. 91, 1479 (1953). 
6 D . Kurath, Phys. Rev. 91, 1430 (1953); D. M. Brink, Proc. 

Phys. Soc. (London) A67, 757 (1954); S. P. Pandya, Phys. Rev. 
108, 1312 (1957). 

6 N. D. Newby, Jr., and E. J. Konopinski, Phys. Rev. 115, 434 
(1959). 

the existence of the spin-orbit force in the nuclear force 
is still questionable. The residual interaction of nucleons 
outside the closed shell is not well known, and there 
seem to be no a priori reasons for retaining the same 
strength parameters of the free two-nucleon problem 
for this interaction. However, because of our ignorance 
of the exact form of the residual interaction, we shall 
rely upon the free two-nucleon force parameters in 
estimating the strengths of our force, which we hope 
simulates the residual interaction. 

II. ZEROTH-ORDER APPROXIMATION 

Before discussing our choice of the residual force 
between proton and neutron outside closed shells, we 
describe the basic assumptions that enter into our 
calculation. In our odd-group model, we assume that 
the doubly closed shell can be treated as an inert core 
giving rise to the central field in which nucleons outside 
the doubly closed shell move. I t is assumed that 38 
protons and 50 neutrons form closed-shell cores. The 
assumption that 50 neutrons form a closed shell has 
been established because Zr90 exhibits typical properties 
of a closed-shell nucleus.7 The 38-proton subclosed 
shell has been assumed by several workers,8 and we 
make the same assumption. These assumptions simplify 
the calculation, since there will be only one proton and 
one neutron outside the doubly closed-shell core in Y90. 
The wave function is then the y-j-coupled new basis 
vector, which is a simple vector product of the wave 
functions of the nonidentical nucleons 1 and 2 (proton 
and neutron) : 

\a)=R1(r1)R2(r2)\j1j2JM), 

where Ri(ri)R2(r2) is the radial part of the wave 

7 K. W. Ford, Phys. Rev. 98,1516 (1955); J. P. Elliot and A. M. 
Lane, in Handbuch der Physik, edited by S. Fliigge (Springer-
Verlag, Berlin, 1957), Vol. 39, p. 241; R. K. Sheline, Physica 23, 
923 (1957); N. H. Lazar, G. D. O'Kelley, J. H. Hamilton, L. M. 
Langer, and W. G. Smith, Phys. Rev. 110, 513 (1958). 

8 B . F. Bayman, A. S. Reiner, and R. K. Sheline, Phys. Rev. 
115, 1627 (1959); V. K. Thankappan and Y. R. Waghmare, 
Progr. Theoret. Phys. (Kyoto) 22, 459 (1959); I. Talmi and I. 
Unna, Nucl. Phys. 19, 225 (1960); V. K. Thankappan, Y. R. 
Waghmare, and S. P. Pandya, Progr. Theoret. Phys. (Kyoto) 
26, 22 (1961). 
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TABLE I. Single-particle levels of the thirty-ninth proton. 

Configuration 

put 
#9/2 

a Exper imenta l d a t a from Ref. 
b Average between Y89 and Y91 

Y89 a 

0 
913 

n . 

Energy (keV) 

0 
551 

Y^o b 

0 
732 

function and \jij2JM) is the angular part. Now we 
assume that the Hamiltonian describing this nucleus 
at low energy may be written as 

H=H1+H2+V12, 

where Hi and H2 are the single-particle shell-model 
Hamiltonians for particles 1 and 2, respectively, and 
F12 is the two-body interaction between particles 1 
and 2. This implies that 

# t- |a)=€ 0*|a) , 

for i— 1 or 2, where e0* is the single-particle energy for 
particle i. In the zeroth-order approximation, the level 
energies are given by the sum of proton and neutron 
single-particle energies E ; eo*. Estimated single-particle 
levels have been reported in several works,9,10 but one 
cannot avoid the arbitrariness in choosing the pa­
rameters involved. Instead, we rely on the experimental 
single-particle levels of neighboring nuclei to eliminate 
ambiguity. For the proton single-particle levels, we 
choose the average values between Y89 and Y91, and 
for the neutron single-particle levels the average 
between Sr89 and Zr91. The experimental single-particle 
levels are presented in Tables I and I I , and the resulting 
zeroth-order energy levels are listed in Table I I I . The 
assignment for the lowest state of the fifty-first neutron 
as the J5/2 configuration is evident from the fact that 
the observed ground-state spins and parities of Sr89 

and Zr91 are f+.n The lowest state of the thirty-ninth 
proton is assumed to be pi/2, since both Y89 and Y91 

are known to have ground-state spin J -.11 Recently, 
the atomic-beam measurement of the ground-state 

TABLE II . Single-particle levels of the fifty-first neutron. 

Configuration 
Energy (keV) 

Z r 9 1 b V90 c 

^6/2 
Sl/2 
^3/2 
#7/2 

0 
1050 
2020 

0 
1225 
2070 
2205 

0 
1138 
2045 
2205 

a Experimental data from B. L. Cohen, Phys. Rev. 125, 1358 (1962). 
b Experimental data from Cohen (Ref. a) and Ref. 24. 
0 Average between Sr89 and Zr91. 

9 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 29, No. 16 (1955). 

10 H. Noya, A. Arima, and H. Horie, Suppl. Progr. Theoret. 
Phys. (Kyoto) 8, 33 (1958). 

11 D. Strominger, J. M. Hollander, and G. T. Seaborg, Rev. 
Mod. Phys. 30, 585 (1958). 

TABLE III. The zeroth-order levels in Y90. 

Configuration (proton-neutron) Energy (keV) 

puidhiz 
#9/2^5/2 
puism 
#9/2*1/2 
puidzn 
pxiigm 

g9/2g7/2 

0 
732 
1138 
1870 
2045 
2205 
2777 
2937 

spin has been made for Y91, confirming the p\\2 con­
figuration.12 The observed low-energy levels in Y90 are 
shown in Fig. 1. The ground-state spin of Y90 has been 
determined recently by the atomic-beam method to 
be 2.13 

We treat V\2 as a perturbation of the central field of 
the shell-model core, and evaluate the first-order 
perturbation term. The total energy for the state of a 
given / is given approximately then by 

£«€oH-€i ; i = l , 2 , 

where the higher terms are neglected. Values for eo* are 
listed in Table I I I . I t is clear that V\2 removes the 
degeneracy of the state with various J values arising 
from a given configuration. The values of ei, and con­
sequently E, are obtained from the eigenvalue equation 

E L(a\ V12\a')- (E-eoaA)da,a>Ja'\aJM) = 0. 

Ld 

(O-.l-)- - 6.849 

• 2.741 

(O-. l-)- • 1.215 

2 + -
7 + -

-0.7767 
- 0.685 

- 0 . 2 4 7 
• 0.2024 
- 0 . 0 

FIG. 1. Experimentally observed low-energy levels in Y90. 

12 F. R. Petersen and H. A. Shugart, Phys. Rev. 128, 1740 
(1962). 

13 F. R. Petersen and H. A. Shugart. Phys. Rev. 125, 284 (1962). 
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For the numerical calculation, the summation is operators for the triplet-even, singlet-even, triplet-odd, 
restricted to the configuration listed in Table I I I . and singlet-odd states, respectively, and V's are the 

corresponding strength parameters. The operator Sn 
III. RESIDUAL INTERACTION fa the tensor force operator defined as 

Now we assume an explicit form of the proton- $(Q •* )(v -r ) 
neutron residual interaction, and proceed to evaluate 51 2 = —— «JI-<F2-
the matrix element. The residual interaction Vu is ru

2 

chosen as 
Vu=Vc(ri2)+VT(ri2)Si21

 T ^ e m a t r i x element for the central force may be 
expressed as 

where the first term is the central force, and the second 
term is the tensor force. The explicit forms of these (a\ Vc(ru)\a/)=^[m(VTEc+VToc) 
forces are + ( F T E C - VTOC) ( -1)* + * ' + J Pi2 'Ja \ Uc(r12) | a') 

Vc(n2) = [ F T E C P T E exp(- /3 T E
c f i2 2 )+F S E

c P S E -~K(VTBC~- VSE
C+ F T O C ~ F S O C ) 

X e x p ( - / W V 1 2
2 ) + F T O ' P T O e x p H W V i * ) + < 7 ™ ° + V™C~ W ~ V ^ < ~ * ) W + W ] 

+ VsocPso exp(-|8so<Vi22)], X<a I Uc(r12)Ps \ a'), 
anc* where Ps is the singlet projection operator, and Pu

f 

VT(r12)=VTBTPTBexp(—(3TETri22) i s a n e x c h ange operator which interchanges U<^>U 

+ FTo rPToexp(~^ToTn22) a n d tt^ti i n ^ h e P r i m e d ( i n i t i a l ) s t a t e s * T h e 
-f-KTo ^xoexp^ PTO r12), m a t d x d e m e n t s ( a | ^ c ( f l 2 ) | f l / ) a n d < a |J7C( r i 2)p^| a /) 

where PTE, P S E , PTO, and Pso are the projection are given by (see Appendix A) 

<a | f f a ( r iOM=(- l )* + ^(D ' i ]D"»]M^ 
(a| c/c(f12)ps|a0= (-i)jV+^/+HCii][i2]Cii'][i2a)1,HPi]p2]p1Gp2G)1/w(/1i1;2i2; §/) 

XW(tij i 'h 'h '; iJ)Zk Fk(hOh'QI jfcO) (hOh'O\ kO)W(hh'hh'; kJ), 
and with the restriction that k+h+h' and k+h+ti where 
are both even. The symbol [ a ] stands for [ 2 a + l ] , < a | / ? „ , | a ' ) = - 5 L ( « | r ^ | a ' ) ^ , *, j = 1, 2; 
and ( | ) and W are the usual Clebsch-Gordan and *,<,»• 
Racah coefficients. The Slater integral F» is defined as ^ = ^ ^ y ^ ^ f 

Jo Jo X M = ( M M W 1 0 « ) I * < W 1 0 X»= ( M M ) 1 ' 2 (lOiW I *0) (10M)I yO) 

r1 /cos012\ XW(llxy;2k), 
X d[ )Pk(cos0u)Uc(ru), and 

J-i \ 2 / rx /•» 
(a|nrt\a')=(2k+l) dnr^R^' / dr2r^RJLJr^ 

where U°(ri-i) takes the Gaussian form exp(—/3fi2
2) ^o 7o 

with different values of /3 for the corresponding states. i / c o s^ v UT(r ) 
For the tensor force, the matrix element can be ><; / M )Pk(cosdn) — . 

expressed as 7_i \ 2 / r12
2 

(a\ VT(ri2)Su\a')=ll(VTET+VTOT) Here the form of the radial function for the triplet-even 
+ (V^-VToT)(-^h'+3V+JPnJa\U^(r1,)S1,\a'), state is 

£/r(fi2) = exp(-/3TE
:r 'ri2

2), 
and (see Appendix B) 

, , , , „ , , , , , and for the triplet-odd state, 
(a\UT(ru)S12\a')=3-£(a\Fxy\a')W(lxly;K2) 

*.-.» ^2'(»-i2) = exp(-/3To rr1 2
2) . 

X(jij\JMITi^^-Ts""^! ji'ji'JM), The angular part in terms of 3-, 6-, and 9-j symbols is 

(jijJM | Ty^-TV1*'* | tfjJj'M^ (-l)*+>w*l*-J65jj.5MM> J
K £ jf(D'JDV]DV]DV])1« 
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In the zero range, the tensor force vanishes, and the 
central force matrix element reduces to 

0" (a\Vc(ru)\a')->(br)-1 

X [ (3 F T E C + VSv
c)(a | a ( n - r2) | a') 

+ (FT E
c-FS E

e)<a|S(ri-r2>1-ff2 |a '}], 

where (see Appendix A) 

(a\ 5( r i - r 2 ) | a')= (l/2[/])F0([ii]D-2][ji /]DY])1/s 

x(Mi2-l|/o)Ovii2'-i|/o) 
4 4 ' 

X ( _ l)n-HV+li+Zi '+i-j- (__ l)n+n'+72+?2\ 

and 

(a|5(ri-r2)ori-or2|a/) 

-( l /2[ /])F0([ i1][ i2]DV]DV])1 / 2 

xyii^-il^ovijv-iijo) 

X1 ( - l ) ^ w ^ i ' [ l + 2 ( - l ) w w ^ ] 

4/ ( /+ l ) J 

-l_ (— j[yi+n'+/2+72'. 
AA' 

4 / ( 7 + 1 ) ) ' 
with 

^ = C ( 2 i i + l ) + ( - l ) * + ^ - J ( 2 i 2 + l ) ] . 

The matrix element (a| F°(ri2)o,i*o,
2|a

/) vanishes unless 
both h+h+J and Zi'+^'+Z are even. Similarly, 
{a\V°(ri2)\af) vanishes unless h+li+h+W is even. 
The Slater integral F0 is given by 

Jo 
R1(r)R2(r)R1

,(r)R2
f(rydr. 

For the radial part of the wave function, we choose 
the harmonic-oscillator wave function. It is generally 
believed that the harmonic-oscillator wave function is 
a fairly good approximation for light and medium 
nuclei, whereas the square-well potential is a closer 
approximation for heavy nuclei. The radial wave 
function has the explicit form14 

Rm(r) = Nnle~^r2rlvnl(r), 

where Nni is a normalization constant chosen so that 

/ 
R^{r)Rnl{rYdr^\. 

The function vni(r) is the associated Laguerre poly­

nomial defined as 

fn\ (2/+1)!! 
= E(-1)*2*( ) - -(**)*. 

*-o W ( 2 / + * + l ) ! ! 

The nuclear size parameter v~1/2 appearing in the wave 
function has to be evaluated for the numerical calcu­
lation. The harmonic-oscillator spacing is known to be 
roughly 

fe*= Wv/rn£=LMA-w MeV, 

from which v may be evaluated. The evaluation of the 
central-force radial integral has been simplified analyti­
cally by Ford and Konopinski.15 The tensor-force radial 
integral (a\r^j\af) cannot be evaluated directly, since 
the integral has singularities due to the r12

2 term 
appearing in the denominator. This difficulty is elimi­
nated by expanding the integral into a linear com­
bination of the Talmi integral.14,15 (See Appendix B.) 
For the delta-function force, the radial integral can be 
easily evaluated analytically, and the numerical values 
of the integral have been given by several workers for 
the diagonal case.11,16 

IV. ENERGY SPECTRUM 

Before introducing the tensor force, the numerical 
calculations are carried out extensively with various 
central force mixtures including Serber, Ferrell-
Visscher, and Rosenfeld forces and with various ranges. 
Although the delta-function force may give the correct 
sequence of the observed levels in Y90 as shown by 
Bouten et al.y

17 the calculations with realistic finite-range 
forces indicate that we must introduce a fairly strong 
attractive odd force to fit the experimental data if we 
were to retain the singlet-even to triplet-even ratio 
(^0.5) of the free two-nucleon potential. A calculation 
with one set of central-force parameters with rather 
strong attractive odd forces, which is chosen so as to 
fit both the doublet spacings of / = 2—, 3— and 7 = 2 + , 
7+, is shown in Fig. 2. Although the fit with the 
experiment is good, there is no justification for assuming 
the central force mixture of strong attractive odd force. 
Furthermore, this is not the only set of parameters 
which gives rise to a good fit with the experiment, 
since there are other sets of the parameters which yield 
equally good fits. From the free two-nucleon potential, 
it is known that the triplet-odd force is weak, and the 
singlet-odd is even repulsive. 

To include the tensor force in the residual interaction, 
we must decide the strength of the tensor force. Since 
the relative weight of the central and tensor force is 

14 L. Talmi, Helv. Phys. Acta 25, 185 (1952). 

16 K. W. Ford and E. J. Konopinski, Nucl. Phys. 9, 218 (1958/ 
59). 

16 N. Zeldes, Nucl. Phys. 2, 1 (1956/57). 
17 M. Bouten, M. Demeur, and H. Pollak, J. Phys. Radium 

22, 697 (1961). 
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TABLE IV. Values of the intrinsic range and well-depth parameters, s and b, for the BGT and simulated BGT potentials. The intrinsic 
ranges for the simulated BGT potential are assumed to be same as the BGT potential and are not shown. The corresponding strength 
and force range parameters for the simulated BGT are also shown. 

States 

Central triplet-even 
Central singlet-even 
Central triplet-odd 
Central singlet-odd 
Tensor triplet-even 
Tensor triplet-odd 

BGT 

5 

2.882 
2.964 
0.201 

-1.867 
2.078 

-0.493 

5(F) 

1.013 
1.461 
2.119 
2.119 
2.019 
2.649 

s 

1.0 
1.028 
0.070 

-0.648 
0.721 

-0.171 

Simulated BGT 
Strength 

(MeV) 

-223.02 
-110.03 

-3 .57 
-f-33.06 
-40.50 
4-5.58 

Force 
range (F) 

0.706 
1.018 
1.476 
1.476 
1.407 
1.845 

not well known in the residual force, we use the free 
two-nucleon potential to estimate the tensor-force 
parameters. Recent success of O18 calculations by 
Dawson, Talmi, and Walecka18 encourages us to try 
the Brueckner-Gammel-Thaler potential, hereafter ab­
breviated BGT.19 Because of the computational com­
plexity involved, we take a form of the potential 
different from the BGT. We modify the Yukawa radial 
dependence with a hard core of the BGT potential by 
replacing it with the Gaussian radial function neglecting 
the hard core. 

In estimating the strengths and ranges of our 
Gaussian potential without a hard core, we use the 
detailed analysis of Blatt and Jackson for the free 
proton-neutron system in the shape-independent ap­
proximation.20 If one considers a nuclear potential of 

> 
5 

( /3cr , / 2*2 .oF 

£ = - 6 0 MeV 

-2 + 
-7+ 

Config' Exper. 

> 
2 

FIG. 2. Calculated Y90 spectrum with the central force alone. 
The central-force parameters are adjusted to fit both the doublet 
spacings of 7 = 2, 3— and / = 2-j-, 7 + . 

18 J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys. 
(N. Y.) 18, 339 (1962). 

19 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 
(1958). 

20 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949). 

V(r) = sV'(r) so that V'(f) is the potential that gives 
rise to zero-binding energy for the ground state of the 
proton-neutron system, then V(r) for s>l allows 
bound states, whereas V{r) for s<l gives rise to 
virtual states. The intrinsic range b of V(r) is then 
defined as the effective range of V'(r), and s is called 
the well-depth parameter. The Yukawa and Gaussian 
potentials in the shape-independent approximation are 
expressed by Blatt and Jackson in terms of s and b as 

- V(r) = s(147.585 MeV)b~2(b/r) exp[-2.1196(>/&)] 

for the Yukawa potential, and 

- V(r) = s(229.208 MeV)Zf~2 e x p [ - 2.0604(r/6)2] 

for the Gaussian potential, where b is in units of 10~13 

cm. 

0.04 

0-02 

£ -0.02 h 

-0.04 

-0 .06h 

2 + • 

40.10 

I - . 

7 + -

0 ~ -

2 - -

0.05 

0.0 

•aos 

-0.10 

6.0 8.0 10.0 oo 
Range ( F) 

FIG. 3. Diagonal tensor-even-force matrix elements for several 
observed states in Y90 as a function of the range parameter. 
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The introduction of a hard core always makes the 
force range shorter and the well deeper. However, we 
retain the intrinsic ranges of the BGT potential for 
our simulated potential of the Gaussian form, and 
adjust the well-depth parameters so as to be consistent 
with the low-energy properties of the deuteron. The 
well-depth parameters are normalized to the triplet-
even part of the central potential, which has been 
reduced from s= 2.88 of the BGT potential to s = l . 
Then the triplet-even part of the simulated BGT thus, 
obtained fits approximately the ground-state and low-
energy properties of the deuteron (the binding energy, 
quadrupole moment, percentage of D state, and triplet 
scattering length).21 The values of the parameters s 

'"It: 

7+-

2 - • 

0 - -

0.4 

0.2 

0-0 

0.2 

-0.4 

-0.6 

4.0 8.0 oo 
Range (F ) 

FIG. 4. Diagonal tensor-odd-force matrix elements for several 
observed states in Y90 as a function of the range parameter. 

and b for the BGT and simulated BGT are listed in 
Table IV. 

The diagonal tensor-force matrix elements 

and 
(l/3)<a|PTB^ r(ri2)5i2|a> 

(l/3)<a|PTo^ r(ri2)5i2|fl> 

are plotted as a function of the range in Figs. 3-5. As 
we can see from these figures, the tensor-force matrix 
elements are not always a monotonically increasing 
function of the range, and may be either positive or 
negative. This is to be contrasted with the fact that 

| o.oi(-
13 

"5 
E 

° 0.0 

1 1 

1 , ,.1 

1 1 
1- I 

\°~ 
1 1 \ 

/ 

2-

7T~ 

-
1.0 2.0 

Range (F) 

FIG. 5. Diagonal tensor-even-force matrix elements for the 
observed states in Y90 as a function of the range at the shorter 
ranges. 

the central-force matrix elements are positive and 
monotonically increasing functions with increasing 
range and constant depth. The results of the calculation 
with the simulated BGT potential are compared with 
the experiment in Fig. 6. In diagonalizing the matrix, 
the off-diagonal tensor-force matrix elements are neg­
lected, since they are small compared to the diagonal 
tensor-force matrix elements. The numerical results 
are also presented in Table V, and are shown schemati­
cally in Fig. 7. In Fig. 7, notice that the lowest and 
highest / states ( 2 + and 7 + ) are separated from the 
other / states arising from the same configuration, 
£9/2^5/2. This is consistent with the revised "weak" 
coupling rule of Brennan and Bernstein.22 

21 M. H. Kalos, L. C. Biedenharn, and J. M. Blatt, Nucl. Phys. 
1, 233 (1956). 

Experiment 

FIG. 6. Comparison of the experimental and calculated spectra 
of Y90 with the simulated BGT potential. The symbols CF, TTE, 
and TTO stand for the central, tensor-even, and tensor-odd forces, 
respectively. In diagonalizing the matrix, the off-diagonal matrix 
elements for the tensor force are neglected. 

22 M. H. Brennan and A. M. Bernstein, Phys. Rev. 120, 927 
(1960). 
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TABLE V. Calculated energy levels in Y90, The results before 
and after diagonalization are shown in columns A and B, re­
spectively. In column C, the energy scale is shifted so that the 
ground state lies at zero energy. In diagonalizing, the matrix the 
tensor-force off-diagonal matrix elements are neglected. 

TABLE VII. Calculated eigenfunctions for 
even-parity states in Y90. 

Proton-neutron 
configurations Jir 

Energy (MeV) 
A B C 

g%^dh/2 

p\/2Sm 

gU/2Sl/2 

pi.-dzn 

pmgm 

gmgm 

2-
3-
2+ 
3+ 
4+ 
5+ 
6+ 
7+ 
0-
1-
4+ 
5+ 
1-
2-
3-
4-
3+ 
4+ 
5+ 
6+ 
1+ 
2+ 
3+ 
4+ 
5+ 
6+ 
7+ 
8+ 

-0.515 
-0.480 
0.382 
0.622 
0.624 
0.583 
0.679 
0.359 
0.672 
0.734 
1.736 
1.655 
1.815 
1.650 
2.047 
1.927 
2.372 
2.609 
2.677 
2.487 
1.669 
2.269 
2.615 
2.491 
2.769 
2.470 
2.841 
2.129 

-0.516 
-0.487 
0.377 
0.600 
0.610 
0.551 
0.679 
0.357 
0.672 
0.734 
1.745 
1.671 
1.816 
1.650 
2.054 
1.927 
2.326 
2.686 
2.671 
2.663 
1.669 
2.274 
2.683 
2.420 
2.790 
2.295 
2.842 
2.129 

0.0 
0.029 
0.893 
1.116 
1.126 
1.067 
1.195 
0.873 
1.188 
1.250 
2.261 
2.187 
2.332 
2.166 
2.570 
2.443 
2.842 
3.202 
3.187 
3.179 
2.185 
1.753 
3.199 
2.936 
3.306 
2.811 
3.358 
2.645 

The results of other configurations presented in Fig. 
7 and Table V are also consistent with coupling rules 
of Nordheim,3 and de-Shalit and Walecka.23 The 
eigenfunctions are also computed, and the results are 
shown in Tables VI and VII. As we can see from these 
tables, the configuration mixing is not very important 
for most of the observed states. The almost pure con­
figuration of the ground state (^1/2^5/2)J=s2~ is con­
sistent with the measured magnetic moment. The 
measured magnetic moment of the ground state of Y90 

is —1.629 nm, whereas the calculated magnetic moment 
with the empirical g factors evaluated from neighboring 
nuclei is —1.609 nm if we assume that the configuration 
is pure.13 A level at 0.247 MeV has been suggested by 

TABLE VI. Calculated eigenfunctions for 
odd-parity states in Y90. 

Jir 

1 -

2 -

3 -

Eigenvalues 
(MeV) 

0.734 
1.816 

-0.516 
1.650 

-0.487 
2.054 

piiid^n 

-0.9998 
-0.0158 

0.9987 
0.0500 

Eigenfunctions 
P1/2S1/2 pi/2ds/2 

0.9997 0.0246 
0.0246 -0.9997 

0.0158 
-0.9998 

P\i2gin 

0.0500 
-0.9987 

Eigenvalues 
Jir (MeV) 

Eigenfunctions 
g9l2Sl/2 #9 /2^3 /2 gmgm 

2+ 

3+ 

4+ 

5+ 

6+ 

7+ 

0.377 
2.274 
0.600 
2.326 
2.683 
0.610 
1.745 
2.420 
2.686 
0.551 
1.671 
2.671 
2.790 
0.679 
2.295 
2.663 
0.357 
2.842 

0.9987 
0.0491 

-0.9937 
•0.1108 
0.0161 
0.9938 
0.1101 
0.0064 
0.0037 
0.9860 
0.1623 
0.0361 
0.0058 
0.9997 
0.0206 
0.0037 
0.9996 
0.0263 

0.1100 
-0.9906 
-0.0648 

0.0472 
0.1578 

-0.9871 
0.1060 

-0.0100 

0.1070 
-0.8962 
-0.4304 

0.0079 
-0.0736 

0.5174 
-0.8524 
-0.0466 

0.0949 
0.9105 

-0.3997 
-0.0115 

0.6906 
-0.7231 

0.0491 
-0.9987 

0.0332 
-0.4294 

0.9024 
-0.0040 
-0.0314 

0.8532 
0.5206 

-0.0248 
0.0295 
0.3980 
0.9165 

-0.0174 
0.7229 
0.6907 
0.0263 

-0.9996 

Bartholomew et al? to be the J = 3— state arising from 
the pi/2g7/2 configuration. They have indicated that 
this assignment is consistent with their data and with 
the observed beta decay of Sr90 (total disintegration 
energy of 0.535 MeV) only to the ground state, thus, 
eliminating the possibility of this state being J=zkQ, 
ldh, or 2 — . However, the £7/2 neutron single-particle 
level has been found 24 to be 2.2 MeV above the ground 
state J5/2 in Zr91, and it is very difficult to understand 
the (pi/2g7/2)J:=iZ state being near the ground state. 
This would require an extremely large matrix element 
to over come this initial neutron single-particle spacing 
of 2.2 MeV. The low energy of 0.247 MeV suggests 
that this level is probably not attributable to the 
configuration (̂ 1/2^9/2) nor other configurations caused 
by the core excitation of the 38-proton core. I t remains 
to be seen if the experiment can definitely assign the 
spin and parity to this state. 

The spin and parity of the state at 2.7 MeV have 
not been determined experimentally, and there are 
several calculated levels around 2.7 MeV. The probable 
states within the energy limit of 2.7±0.2 MeV are 
(pi/2gw2)J^'\ (#9/2^3/2)J==3, and (g9/2g7/2)J"~2'6'8. 

V. DISCUSSION 

Some shell-model and nuclear-matter calculations 
have indicated that the nuclear force inside the nucleus 
is not very much different from the free two-nucleon 
potential. Our approach was that the residual inter­
action could be approximated by the free two-nucleon 
potential. Because of enormous complexity arising from 
the introduction of a hard core, we have neglected the 
hard core and used a phenomenological Gaussian 
potential which is deduced from the free two-nucleon 

J A. de-Shalit and J. D. Walecka, Nucl. Phys. 22, 184 (1961). 
24 R. L. Preston, H. J. Martin, Jr., and M. B. Sampson, Phvs. 

Rev. 121, 1741 (1961). 
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FIG. 7. Calculated energy levels in Y90. For each spin, the left-
hand column gives the odd-parity states and the right-hand 
column the even-parity states. Various / states arising from the 
same configuration are connected by thin lines. 

potentials of Jackson-Blatt and Brueckner-Gammel-
Thaler. Although the experimental spectrum is not 
sufficiently resolved to indicate that our choice of the 
residual force is good, there is a remarkable agreement 
between the calculated spectrum and experiment if one 
notes that several shell-model approximations have 
been made and the force parameters are not all adjusted 
arbitrarily. A slight increase of the triplet-even part 
of the central and tensor forces is sufficient to increase 
the doublet spacings of J= 2—, 3—, and 7 = 2 + , 7+ 
so as to improve agreement with experiment. Further­
more, by introducing the tensor force, we can eliminate 
the unrealistic strong attractive odd central forces. 
Concurrently, the simulated BGT potential is used for 
Bi210,25 where most levels of the ground-state multiplet 
(total of nine levels out of possible ten) are resolved by 
the high-resolution (d,p) reaction on Bi209 at the Massa­
chusetts Institute of Technology.26 The analysis of 
those multiplets in Bi210 along with Po210 also indicates 
that the triplet-even part of the simulated BGT 
potential is slightly too weak to account for the over-all 
spacings of the Bi210 ground-state multiplet. A slight 
increase of the triplet-even part of the simulated BGT 
potential improves the spacing of 7=2—, 3— states. 
It would be very interesting to see if one can resolve 
#9/2̂ 5/2 and P1/2S1/2 configurations by using the high-

26 Y. E. Kim and J. O. Rasmussen, UCRL-10707, 1963, Nucl. 
Phys. (to be published). 

26 J. R. Erskine, W. W. Buechner, and H. A. Enge, Phys. Rev. 
128, 720 (1962). 

resolution Y89(d,£)Y90, Zr91(a,0Nb92, or Zr90M)Nb92 

reactions, 
Finally, we should comment on the shell-model 

residual interaction. From the analysis of various shell-
model calculations, the central force alone seems to 
approximate the residual force very well in most cases, 
though many of these cases involve like nucleons, 
where the Pauli principle makes the tensor-even force 
inoperative. However, the tensor-force contributions 
are not always negligible, and must be taken seriously 
in some cases such as in Y90 presented here. The 
characteristic of the tensor-force matrix element is 
that it may be either positive or negative, so that in 
some cases the tensor force effects cannot be exactly 
simulated by a linear combination of four central force 
components. Also, it should be noted that it is very 
difficult to simulate the finite-shorter-range tensor force 
by adjusting the strength parameters of the infinite-
range tensor force and that the infinite-range approxi­
mation for the tensor force is quite unreliable. 

ACKNOWLEDGMENTS 

I am greatly indebted to Dr. Norman K. Glen-
denning, Dr. Hans J. Mang, and Professor John O. 
Rasmussen for their advice during the course of this 
work. I also express my gratitude to Professor 
Rasmussen for reading the manuscript. The com­
putational work was performed on the IBM-7090 
computer at the Lawrence Radiation Laboratory, 
Berkeley, California. 

APPENDIX A 

Our interest here is to evaluate the spin-dependent 
part of the central-force matrix element 

{a\V(ri2)vw2\a). 

It is convenient to consider the singlet projection 
operator Ps and write the matrix element of V(ri2)Ps, 

(aWir^Psla'^KalVir^tJil-w^la'). (Al) 

Here, V(ti—r2) can be expanded in terms of the angle 
co between ri and r2 

F(ri-r 2) = £ Vk(rhr2)Pk(coscjo), 
k 

where Pk(coso>) is the Legendre polynomial of order k. 
We write (a\ V(ru)Ps\a') as 

(a\V(ria)Ps\a') = lj:f»kFk, (A2) 
n,k 

where 

/„*=(-1)"(2*+1) 
X(Jij»JM I *!<•> • <r2<»>P*(cosu>) | ji'jt'J'M'), (A3) 
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and we may write P^(cosw) as 

Fk = / / Ri*(ri)R2*(r2)vk(ri,r2) 
2k-\-l J J where 

XRi'irORz'irJnWdndrz. (A4) Ct'»(0t) = \ ** ^ 

By the addition theorem for spherical harmonics, so that 
.2k+l. 

F,<"(M.O, 

/ « * = E (- l )" + ^(2*+l)0- i jVM|<r 7 (»)( l )C«(*»( l )^- T
( " ) (2)C_,(*>(2) |y 1 ' jV/ 'M') . (A5) 

The angular part /nfc can be evaluated by using the tensor-operator algebra developed by Racah,27 and de-Shalit 
has obtained the expression of fnu for the diagonal case in the zero-range limit.4 The similar expression including 
the off-diagonal case can be calculated easily and is given in terms of the usual 6-j and 9-j symbols by 

/^=(-l)* '+*'+ /8jv-8if .^(2A+l)Dj ']w(i | |<r«»>| |§) s(/ l | |CW|| / iO(fe | |C<*>| | /20 
t . . } \n k r "j [n k t \ 

X E ( - l ) k + r ( 2 r + l ) \ J . \ J.\ J\\h h Ji H i h jA , (A6) 

where 
[ i , i ' ] = [ ( 2 j 1 + l ) ( 2 i 1 ' + l ) ( 2 j 2 + l ) ( 2 j V + l ) ] , 

and (||!<7'(n)||J) and (lf\\C{k)\\V) are the usual reduced matrix elements. Here the summation over r is restricted by 
\k—n\ ^r^k+n. Obviously, we have 

< a | F ( r 1 - r 2 ) | a ' ) = E/ofcF*, 
k 

(a\V(r1-Y2)<T1'<j2\a')=-Y, fikFk, (A7) 
A: 

and 
( a | r ( r 1 2 ) P s | a , ) = i [ < a | F ( r 1 - r 2 y ) - ( a | F ( r 1 - r 2 ) ( r 1 . c 7 2 | a ) ] , 

where (a\ V{ri2)\a
f) is just the matrix element for the Wigner force (n=0), whereas (a\ V(r1—Y2)<Ti'V2\a/) is the 

contribution from the spin-dependent force (n—1). Instead of evaluating (a\ F(fi2)o ,i'(F2|a/) directly, we shall 
find it easier to evaluate (a| V (r 12) Ps\af) first and then obtain (a\ F O ^ V r o ^ l a ' ) by subtracting the contribution 
due to (a| V(r12) \ar) from (a\ F ( r i 2 )Ps | a / ) . 

Because n can take only two values, 0 and 1, we find it convenient to sum over n first. We may sum over n in 
Eq. (A6) by using 

? < H J ) % ] 'h(2x+i){: * >}{: >x^ >•:}{l l *}' <AS) 

which is easy to verify. Summation over r can also be easily performed, yielding a simpler expression involving 
the 3-j symbol: 

E/^=( - i )—2(2 k + i ) U , f , u j<^ l> *)((; % *){£ I *}{* I f;}{* I / ; } . (A9) 
Here we have 

U,f,l/> C(2ji+1) (2jV+1) (2jt+1) (2jY+1) (2/x+1) (2h'+1) ( % + 1 ) (2h'+1)]. 

The final expression for (a\ V(rn)Ps\a') is 

<a| V(m)PS\a') = i E f t ( - l ) f t ' + ' r i - J + 1 D" , / ^^ ' ] (Wi ' 0 | *0 ) (W, ' 0 | « ) )P r ( / i i 1 / 2 y 2 ; | / ) 
A; 

XW{W jx'W J2r -AJ)W(hhfhW \kJ), (A10) 

where the symbols ( | ) and W are the usual Clebsch-Gordan and Racah coefficients. 

27 G. Racah, Phys. Rev. 62, 438 (1942). 
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Now we evaluate (a| V{r\%) \a'). Noting 

\s i iU(-i)«-^'i2(2*+i)]-wF /
 3

V yh,r, 

we can easily verify 

<a| v(ru) | a')=£ F*(- i)"'+"+'[i J']1/2OY§ii-i I *o)OYii,-i | I*WUI3I'M*' ; JtO, (All) 
k 

with the restriction that it vanishes unless both h+h'+k and h+h'+k are even. From Eqs. (A7), (A10), and 
(Al l ) , we get 

(a\ 7(fi2>1.iF2 |a'>=:2 £ F * ( - l ) * w + ' [ i ^ ^ ^ 

X Wih'h'h'ti; * / ) W ( « i ' y 2 ' 5 kJ)+(a\ V(rl2) \ a'), (A12) 

where (a\ V(r12) \af) is given by Eq. (Al l ) . 
Now that we have obtained the explicit forms of the spin-dependent matrix element for the finite-range case, 

we obtain the corresponding expressions in the limit of zero range. For the zero-range force, we have Fk=Fo for 
every k, so that the summation over k can be easily carried out analytically. The final results for the zero-range 
force are 

(a | F° (r„) I, a')= -F<UJ'J» (ji \h~ \ I JO) (ji'i i t ' - * I JO) 
2(27+1) 

r A A1 n 
y\ (_l)n+n ,+h-fZi ,+i-|_('_l)n+n'+y2+?V (A13) 

L 4/(/+l)J 
and 
(a|F"(r12)<T1.ff2|a')=- -FlJ,j'l'Khhh-h\JO){h'hh'-h\JO) 

2(27+1) f AA' 1 X (-l)ft-Hi'+'ri-ii'[i+2(_i)ii+iH-/]+(_i)yrHi'+yrt-*t' (A14) 
I 47(7+1)) 

where the superscript zero refers to the zero-range iu/ru. The spin and orbital tensors may be obtained 

limit, and from28 

A = ( 2 y 1 + l ) + ( - l ) n + ^ ( 2 y 2 + l ) . 5 m «)= (&r/lS)W(<n-V)(ffl. V)<y2m(r12) 

In Eq. (A13), <a| V(rn)\a') vanishes unless h+h' /2TT\ 1 / 2 F(r12) 
+I2+I2' is even. Likewise, (a | V0(ru)ov <r21 a') vanishes i m

( 2 ) = ( — ) • — ̂ 2™ (1*12), 
unless both Z i + / 2 + 7 and Z i '+ / 2 ' +7 are even. The ^ 1 5 / rn2 

diagonal cases of both Eqs. (13) and (14) agree with 
the results obtained by de-Shalit.4 An almost identical w h e r e %Ui) = rlYlm(d,4>) and F(0,4>) is the spherical 
expression for (A13) is given by Newby and harmonics. 
Konopinski,6 and a similar expression by Noya et al.w T h e t e n s o r f o r c e h a v e b e e n evaluated into spherical 
Equations (A10) and (Al l ) are also given by Newby t e n s o r s b y Talmi.29 Expanding V^/ni in terms of 
and Konopinski. spherical harmonics, 

APPENDIX B F( r 1 2 )A 1 2
2 =E ^ . , r 2 )P*(coso 1 2 ) 

The tensor-force matrix element wall be evaluated k 

here in the j-j representation. We may express the • w m r wm 
tensor force in terms of the orbital and spin tensors as ~~ ^ * w i / 2 ; 1*, \ l ; C* {l)C-K {Z), 

iFM5„=(S«>.L») , . 
we obtain for the tensor force m terms of spherical 

where S(2) is the irreducible tensor operator of rank 2 
constructed from the spin operators ai and o2> and fiOA„_, , , , , , . „ • , , . , . 
L / 9 N . 1 , r , i_ i Tr/ \ J i-u • J "ui A. R. Edmonds, Angular Momentum tn Quantum Mechanics 

<2> is a product of the scalar V(ru) and the irreducible ( P r i n c e t o n university tress, Princeton, 1957) 
operator of rank 2 constructed from the unit vector » I . Talmi, Phys. Rev. 89,1065 (1953). 



1722 YEONG E. KIM 

tensors where 

V(rn)Sn~3 £ FxyW(lXly; K2)T1^-1i^, {a\Fxv\a')^-5 £ <a | nry | a'>X* for * , j = l , 2 , 
K-x-v k.i.i 

where 
Xn= (2/15)1/2D*:]l'2(2(M)|x()), 

F*y= - 5 £ »*(»v0{ (2/15)1/2H1'2(20^0| cd)W 
+ (2/15)1'2[>]1/2(20^01 y0)r2

2 ^22= (2/15)1/2[3;]
1«(20^01 yO), 

+ (HM)1/2(10^0|^)(10^0|yO)PF(llx3;; 2*)™}, X i 2 = (H[;y])./2(iOM)|sO)(10£0|;yO) 

a n d XW{llxy;2k), 
Tj(

1'^=[o'0)(t-)xCW(*)] ^ * = l o r 2 . and 

The symbols ( | ) and W are the usual Clebsch- /"* 2„ „ , f° , „ p „ , 
Gordan and Racah coefficients, and [a] stands for <«k*v|a'>=(2*+l)J dr.r^R^'J dr^R^nn 
[ 2 a + l ] . Now the evaluation of the matrix element for 
F(ri2)5i2 is straightforward by using the similar method A /coscoi2\ Vtyu) 
of Appendix A. The final result is X / dl ]PA(COSCOI2) . 

J__l \ 2 / fi22 

(a\V(r12)S12\a') = 3 £ <a|Z^ 1*^(1*1?; #2) 
The angular part is given in terms of 3-, 6-, and 9-j 

X(J1J2JMI TV1*'* • T2^
K I ji'ji'J'M'), symbols as 

I* 71 J2 

X(BK&T,T(5 ; '̂)(o 1 o)n; J i : f;; * i 

([iJCiJDYlDY])1'2 

An almost identical result for the diagonal case only is the length parameter appearing in the harmonic 
given by de-Shalit and Walecka.23 The radial integral oscillator radial wave functions, and 
(a I r-iTj I«') can be evaluated by expanding it into a 
linear combination of Talmi integrals , N ,„, , .-, f , /C 0 S W l 2 \„ , Vviv 

Vk(r1,r2)={2k+l) / rfl JPt(coscoi2) . 
<a|f<rJ|«'>= E /*(»,»»')= £ (l/2x)1/22-(™+"'')-8 J-i \ 2 / r12

2 

m'"! OT,m The Talmi integral /2<r is the single integral denned as 
X £ ( w + » ' - 2 H - l ) ! ! W f » , « , 0 / * „ . . , X 2 X F ( ( ; 1 % ) 

/2<r= / #2(r expf • ) x?dx. 
Jo \ 2/ vx2 

x\V(vl'2x) 
J2ff=

: / x20 exp( -
where /& is the double integral of the form 

/

The expansion coefficient, T, is the Talmi coefficient 

x1
mx2

m,vk(rhr2) exp(-x1
2-x2

2)x1
2dxix2

2dx2. defined by Ford and Konopinski,16 and the explicit 
J expressions along with several recursion relations for 

the Talmi coefficients are given in detail by Ford and 
The variable %i is defined here as frfy/v and (p)~l/2 is Konopinski. 


